Exercise 3.4.1

The integration-by-parts formula

$$
\int_{a}^{b} u \frac{d v}{d x} d x=\left.u v\right|_{a} ^{b}-\int_{a}^{b} v \frac{d u}{d x} d x
$$

is known to be valid for functions $u(x)$ and $v(x)$, which are continuous and have continuous first derivatives. However, we will assume that $u, v, d u / d x$, and $d v / d x$ are continuous only for $a \leq x \leq c$ and $c \leq x \leq b$; we assume that all quantities may have a jump discontinuity at $x=c$.
(a) Derive an expression for $\int_{a}^{b} u d v / d x d x$ in terms of $\int_{a}^{b} v d u / d x d x$.
(b) Show that this reduces to the integration-by-parts formula if u and v are continuous across $x=c$. It is not necessary for $d u / d x$ and $d v / d x$ to be continuous at $x=c$.

Solution

This formula will be modified to take a jump discontinuity at $x=c$ into account.

$$
\begin{aligned}
\int_{a}^{b} u \frac{d v}{d x} d x & =\int_{a}^{c-} u \frac{d v}{d x} d x+\int_{c+}^{b} u \frac{d v}{d x} d x \\
& =\left(\left.u v\right|_{a} ^{c-}-\int_{a}^{c-} v \frac{d u}{d x} d x\right)+\left(\left.u v\right|_{c+} ^{b}-\int_{c+}^{b} v \frac{d u}{d x} d x\right) \\
& =u(c-) v(c-)-u(a) v(a)+u(b) v(b)-u(c+) v(c+)-\left(\int_{a}^{c-} v \frac{d u}{d x} d x+\int_{c+}^{b} v \frac{d u}{d x} d x\right) \\
& =[u(b) v(b)-u(a) v(a)]-[u(c+) v(c+)-u(c-) v(c-)]-\int_{a}^{b} v \frac{d u}{d x} d x \\
& =\left.u v\right|_{a} ^{b}-\left.u v\right|_{c-} ^{c+}-\int_{a}^{b} v \frac{d u}{d x} d x
\end{aligned}
$$

If u and v are continuous at $x=c$, then $u(c-)=u(c+)$ and $v(c-)=v(c+)$. This formula then reduces to the standard one for integration by parts because

$$
\begin{aligned}
\left.u v\right|_{c-} ^{c+} & =u(c+) v(c+)-u(c-) v(c-) \\
& =0
\end{aligned}
$$

